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The common fold shared by members of the glutathione-transferase (GST)

family has a topologically conserved isoleucine residue at the N-terminus of

helix 3 which is involved in the packing of helix 3 against two �-strands in

domain 1. The role of the isoleucine residue in the structure, function and

stability of GST was investigated by replacing the Ile71 residue in human

GSTA1-1 by alanine or valine. The X-ray structures of the I71A and I71V

mutants resolved at 1.75 and 2.51 Å, respectively, revealed that the mutations do

not alter the overall structure of the protein compared with the wild type. Urea-

induced equilibrium unfolding studies using circular dichroism and tryptophan

fluorescence suggest that the mutation of Ile71 to alanine or valine reduces the

stability of the protein. A functional assay with 1-chloro-2,4-dinitrobenzene

shows that the mutation does not significantly alter the function of the protein

relative to the wild type. Overall, the results suggest that conservation of the

topologically conserved Ile71 maintains the structural stability of the protein but

does not play a significant role in catalysis and substrate binding.

1. Introduction

Glutathione transferases (GSTs; EC 2.5.1.18) are a ubiquitous

superfamily of enzymes that are found in eukaryotes and prokary-

otes. They are primarily involved in the defence of the cellular milieu

against an array of reactive exogenous and endogenous compounds

(Armstrong, 1997). Their key function is to mediate the catalytic

conjugation of glutathione (�-glutamyl-cysteinyl-glycine; GSH) to an

electrophilic substrate, thus increasing the hydrophilicity and hence

the excretion of the compound from the cell. In addition to their role

as detoxifying enzymes, GSTs are involved in a broad range of

diverse cellular processes including transport and storage (Litwack et

al., 1971), thiol transfer (Eklund et al., 2007), stress kinase regulation

(Desmots et al., 2005), prostaglandin synthesis (Kanaoka et al., 1997)

and peroxidase activity (Board et al., 1997). GSTs are widely

distributed in several tissues in higher eukaryotes as either cytosolic,

microsomal or mitochondrial GSTs (Mannervik et al., 1985; Sheehan

et al., 2001; Frova, 2006).

The cytosolic GSTs have been well characterized and form a

number of species-independent gene classes (Mannervik et al., 1992;

Pemble & Taylor, 1992; Board et al., 1997; Sheehan et al., 2001; Frova,

2006). Cytosolic GSTs are dimers, with each subunit comprising of an

N-terminal domain with a thioredoxin-like fold (�������) and a

larger C-terminal domain which is predominantly �-helical (Dirr et

al., 1994). There is one active site per subunit, which is made up of

the glutathione-binding site (G-site) and an adjacent hydrophobic

substrate-binding site (H-site). The conformation of the H-site

enables GSTs to bind to a variety of electrophilic substrates

(Mannervik et al., 1985; Oakley et al., 1999).

Most GSTs share a common secondary-structure topology despite

the limited sequence identity between the various gene classes

(Sheehan et al., 2001; Frova, 2006). Therefore, the functional diversity

within the GST superfamily arises from each class showing unique

physicochemical features within the active site (Dirr et al., 1994).

Structural alignments of GSTs have shown that only about 5% of the

residues are strictly conserved (Sheehan et al., 2001; Cromer et al.,

2002; Frova, 2006). Ile71 in helix 3 of human GSTA1-1 (hGSTA1-1) is
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topologically a highly conserved residue in the core of the N-terminal

domain of the dimeric GSTs as well as in the dimeric and monomeric

GST-like proteins Grx2, Urep2 and CLICs, with the exception of

omega GST, which has a threonine residue (Fig. 1a). The topologi-

cally conserved isoleucine (and isosteric threonine) is involved in the

packing of helix 1 and strands 3 and 4 against helix 3, as shown for

hGSTA1-1 in Fig. 1(b), suggesting that it might play a significant role

in maintaining the stability of the tertiary structure of the N-terminal

domain and, given its proximity to the active site which is located

above helices 1 and 3 and to strands 3 and 4, the functionality of the

enzyme. In this study, we investigated the effect of the replacement of

the topologically conserved Ile71 residue in hGSTA1-1 by alanine or

valine on the structure, stability and catalytic function of the enzyme.

2. Experimental methods

2.1. Mutagenesis, expression and purification

The pKHA1 plasmid encoding an open reading frame cDNA

sequence for wild-type hGSTA1-1 (GenBank ID No. AAB20973.1;

Rozen et al., 1992) containing no purification tag was a gift from

Professor B. Mannervik (Uppsala University, Uppsala, Sweden;

Stenberg et al., 1992). The pKHA1 plasmid was used as a template for

site-directed mutagenesis to create the I71V and I71A mutants. The

I71V mutant was generated with the QuikChange method (Strata-

gene, La Jolla, California, USA), while the GeneEditor method

(Promega, Madison, Wisconsin, USA) was used to generate the I71A

mutant. The replacement of the leucine TTA codon by the valine

CTG and alanine TCG codons was confirmed by sequencing (Inqaba

Biotechnical Industries Pty Ltd, Pretoria, South Africa). Recombi-

nant I71A and I71V hGSTA1-1 were overexpressed in Escherichia

coli strain BL21 (DE3) pLysS and purified as described previously

(Stenberg et al., 1992).

2.2. Crystallization, X-ray detection and data processing

Crystals of recombinant I71A and I71V hGSTA1-1 were grown as

described previously (Gildenhuys et al., 2010). Briefly, crystals of both

mutant proteins were grown by the hanging-drop vapour-diffusion

method at 293 K using a 24-well microplate. Each hanging drop (4, 6

or 8 ml) was comprised of equal volumes of protein stock solution and

reservoir buffer. The stock protein concentration was 10 mg ml�1

(I71A hGSTA1-1) or 15 mg ml�1 (I71V hGSTA1-1) in 0.1 M Tris–

HCl pH 7.5 containing 10 mM DTT, 2.5 mM S-hexylglutathione and

0.02% sodium azide. The reservoir buffer was PEG 4000 [19%(w/v)]

in 0.1 M Tris–HCl pH 7.5, 10 mM DTT and 0.02% sodium azide. A

paraffin–silicon oil mixture (1:1 ratio) was placed on top of the

reservoir buffer in the wells for the I71A hGSTA1-1 crystallizations

to induce favourable conditions for the growth of large crystals by

slowing evaporation and supersaturation in the wells (Chayen et al.,

1990). The crystals were harvested, briefly soaked in the reservoir

buffer and mounted on a cryoloop. X-ray diffraction data for I71A

hGSTA1-1 were collected on a Bruker X8 Proteum system with a

Microstar copper rotating-anode generator with Montel 200 optics, a
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Figure 1
(a) Structure-based sequence alignment of GST proteins corresponding to the region containing strand �4 and helix �3. The residue in bold indicates the topologically
conserved isoleucine in helix �3. Alpha to zeta represent different gene classes of dimeric GSTs; Clic1 (chloride intracellular channel 1) and Grx2 (glutaredoxin 2) are
monomeric GST homologues and Ure2p (a prion protein in yeast) is a dimeric GST homologue. The PDB codes are shown in parentheses. The alignment was performed
with 3DCoffee (O’Sullivan et al., 2004). (b) Ribbon structure of domain 1 in human GSTA1-1 (PDB code 1k3l), showing the location of Ile71 in the core of domain 1. The
image was generated with PyMOL (DeLano, 2002).

Table 1
Data-collection and refinement statistics.

Values in parentheses are for the outer shell.

I71A hGSTA1-1 I71V hGSTA1-1

Wavelength (Å) 1.5418 1.5418
Space group C2 (C121) C2 (C121)
Unit-cell parameters (Å, �) a = 99.67, b = 93.93,

c = 51.50, � = 92.94
a = 98.41, b = 93.58,

c = 50.72, � = 93.05
Wilson plot B factor (Å2) 10.5 38.1
Solvent content (%) 47.89 45.87
Resolution range (Å) 68.32–1.75 (1.84–1.75) 67.30–2.51 (2.57–2.51)
No. of observed reflections 47499 20428
No. of unique reflections 45093 14904
Completeness 99.4 97.2
hI/�(I)i 4.8 (3.57) 9.63 (2.25)
Rmerge† 0.090 (0.405) 0.095 (0.215)
Final overall R factor 0.211 0.211
Rwork‡ 0.207 (0.492) 0.206 (0.279)
Rfree‡ 0.281 (0.456) 0.298 (0.322)
No. of protein atoms 3572 3576
No. of ligand atoms 52 52
Matthews coefficient VM (Å3 Da�1) 2.36 2.27
Solvent content (%) 47.9 45.9
Total No. of atoms 4469 3726
Average B value (Å2) 15.814 32.23
R.m.s.d. in bond length (Å) 0.0229 0.07
R.m.s.d. in bond angles (�) 1.930 1.716
Ramachandran statistics

Most allowed (%) 97.25 94.95
Allowed (%) 2.29 3.44

Asymmetric unit content Dimer Dimer
PDB code 3ktl 2r6k

† Rmerge =
P

hkl

P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ, where I(hkl) is the intensity of

reflection hkl,
P

hkl is the sum over all reflections and
P

i is the sum over i measurements
of reflection hkl. ‡ Rfree is calculated for a randomly chosen 5% of reflections which
were not used for refinement of the structure and Rwork is calculated for the remaining
reflections.



PLATINUM 135 CCD detector and an Oxford Cryostream Plus

system and the diffraction data for I71V hGSTA1-1 crystals were

collected on a Rigaku RUH3R copper rotating-anode X-ray source

with a Rigaku R-AXIS IV+ image-plate camera, an X-stream 2000

low-temperature system and an AXCO PX50 glass capillary optics

system. Crystals were cooled to 113 K in a stream of nitrogen during

data collection and images were collected covering an oscillation

angle of 0.5� per image. The data sets were processed using APEX

and SAINT software (Bruker AXS Inc., Madison, Wisconsin, USA)

for I71A hGSTA1-1 and HKL-2000 (Otwinowski & Minor, 1997) for

I71V hGSTA1-1.

The structures of both mutants were solved by molecular

replacement using MOLREP (Vagin & Teplyakov, 2000) as imple-

mented in the CCP4 suite of programs (Collaborative Computational

Project, Number 4, 1994), using wild-type hGSTA1-1 (PDB code

1k3l; Le Trong et al., 2002) as the search model. Model refinement was

perfomed with REFMAC5 (Murshudov et al., 1997) and model

building was performed with Coot (Emsley & Cowtan, 2004). After

refinement of the ligand-free proteins, the model of S-hexylgluta-

thione from 1k3l was built into the mutant structure and solvent

molecules were added using Coot (Emsley & Cowtan, 2004). The

data-collection and refinement statistics are given in Table 1.

Stereochemical validation of the model was performed using

PROCHECK (Laskowski et al., 1996) and MolProbity (Chen et al.,

2010). PyMOL (DeLano, 2002) was used to generate images of the

structures.

2.3. Enzyme-activity studies

Enzyme activity was determined at 293 K with 1 mM 1-chloro-2,4-

dinitrobenzene (CDNB) and 1 mM GSH in 0.1 M sodium phosphate,

1 mM EDTA pH 6.5 by monitoring the reaction at 340 nm (Habig &

Jakoby, 1981). All rates were corrected for non-enzymatic rates.
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Figure 2
Stereo diagrams of (a) wild-type, (b) I71A and (c) I71V hGSTA1-1 showing the structural elements around residue 71 in helix 3. Secondary structures are shown as ribbons
and amino-acid side chains are shown as sticks. The two water molecules included in the core of I71A hGSTA1-1 (b) are shown as spheres.



2.4. Urea-induced equilibrium unfolding

Equilibrium unfolding studies were conducted as described pre-

viously (Wallace et al., 1998). The protein concentration was 2 mM in

20 mM sodium phosphate buffer pH 6.5 containing 1 mM EDTA and

0.02% sodium azide and the concentration of urea was between 0 and

8 M. Structural changes were monitored by far-UV CD on a Jasco

model 810 CD spectropolarimeter at 222 nm and by tryptophan

fluorescence on a Perkin–Elmer LS50B luminescence spectrometer

with the excitation wavelength at 295 nm. The unfolding data were

analysed according to a two-state model with only folded dimeric

(N2) and unfolded monomeric (U) states (Pace, 1986) using the

global fitting program SAVUKA v.6.2.26 (Beechem, 1992; Zitzewitz et

al., 1995; Bilsel et al., 1999).

3. Results and discussion

In this study, the structures of human I71A and I71V GSTA1-1

mutants in complex with S-hexylglutathione were determined at 1.75

and 2.51 Å resolution, respectively; the data-collection and refine-

ment statistics are shown in Table 1. The Matthews coefficient (VM;

Matthews, 1968) for both crystals was calculated using the CCP4 suite

of programs (Collaborative Computational Project, Number 4, 1994).

VM values of 2.36 Å3 Da�1 for the I71A mutant and 2.27 Å3 Da�1 for

the I71V mutant were obtained, with associated solvent contents of

47.9% and 45.9%, respectively, indicating that both crystals contained

two molecules in the asymmetric unit. The electron densities of the

final models are well defined for residues 2–222 in chain A and for

residues 4–222 in chain B. The electron density for residue 71 in

chains A and B is consistent with an alanine and a valine residue in

the I71A and I71V GSTA1-1 mutants, respectively. Electron density

defining the locations and the conformations of S-hexylglutathione

bound to chains A and B were clear, except for the terminal regions

of the hexyl moieties owing to their flexibility, as observed in other

structures (Gildenhuys et al., 2010). The replacement of Ile71 by

either an alanine or a valine does not alter the backbone structure, as

indicated by the C� r.m.s.d. values of 0.24 Å between wild-type and

I71A GSTA1-1 and of 0.31 Å between wild-type and I71V GSTA1-1.

In wild-type hGSTA1-1 the structurally conserved Ile71 forms van

der Waals interactions within the core of the N-terminal domain with

its side chain tightly packed against Thr19 (�1), Pro56 (loop

connecting �2 and �3), Val58 (�3) and Leu65 (�4) (Fig. 2a). While the

conformation of the domain is preserved by the replacement of Ile71

by alanine or valine (Figs. 2b and 2c), the cavity (193 Å3 for chain A;

192 Å3 for chain B) created by the I71A mutation results in the

inclusion of two water molecules into the core of the domain (Fig. 2b).

These water molecules are hydrogen bonded to one another and to

the protein and improve the packing density of the mutant.

The specific activity of the mutant enzymes in conjugating CDNB

to GSH is only slightly reduced to 97% (for I71V GSTA1-1) and to

86% (for I71A GSTA1-1) of the wild-type activity. This is consistent

with the fact that although the replacement of Ile71 by alanine

creates a cavity in domain 1 just below the active site, the replacement

of Ile71 by either an alanine or a valine does not significantly alter the

structure of the active site. Furthermore, the conformations of and

interactions with the glutathione moiety bound to both mutants are

essentially the same as those observed for the moiety in the wild-type

complex.

Urea-induced unfolding of I71A GSTA1-1 (Fig. 3a) and I71V

GSTA1-1 (Fig. 3b) produced single sigmoidal transitions for both

secondary (far-UV CD) and tertiary (fluorescence) structural

changes. This two-state cooperative unfolding behaviour has pre-

viously been observed for wild-type GSTA1-1 and involves the folded

dimer and unfolded monomers (Fig. 3; Wallace et al., 1998). However,

the shift of the Cm value or midpoint of the unfolding transition from

4.3 M urea for wild-type GSTA1-1 to lower values for both mutants

(Fig. 3) indicates that both mutations destabilize hGSTA1-1. This is

confirmed by a significant reduction in the value of �GH2O
(the

energy difference between the folded and unfolded states) from 86.60

� 0.74 kJ mol�1 for the wild type to 68.65 � 1.34 kJ mol�1 for I71V

GSTA1-1 and 62.33 � 2.26 kJ mol�1 for I71A GSTA1-1. Further-

more, the cooperativity of unfolding (i.e. the slope of the unfolding

curves) is diminished by both mutations. The m values obtained from

the global fits to the unfolding data in Fig. 3 are 12.93 � 0.67,

9.67 � 0.33 and 7.95 � 0.50 kJ mol�1 M�1 for wild-type, I71V and

I71A GSTA1-1, respectively. The substantially reduced m values for

the mutants suggest that their unfolding process is not truly two-state

involving only folded dimer and unfolded monomers, but that an

intermediate state or states might become populated during their

unfolding as a result of a destabilized N-terminal domain (Soulages,

1998). Ile71 is located in a tightly packed environment in the core of

the N-terminal domain and while the mutations do not perturb the

structure of hGSTA1-1, both mutations create a cavity that dimin-

ished the packing density and in turn reduces the number of stabi-
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Figure 3
Urea-induced unfolding transitions for (a) I71A and (b) I71V hGSTA1-1
determined by circular dichroism at 222 nm (filled circles) and tryptophan
fluorescence (open circles). The unfolding transition for wild-type hGSTA1-1
(Wallace et al., 1998) is shown by the dotted curves in (a) and (b). The protein
concentration was 2 mM in 20 mM sodium phosphate buffer pH 6.5, 1 mM EDTA,
0.02% sodium azide. The solid lines are the global regression fits to a two-state
N2$2U model.



lizing van der Waals interactions within the core. In the I71A mutant,

however, there are two highly ordered water molecules that are

included in the larger hydrophobic cavity and therefore contribute to

the packing density (Fig. 2b), thus maintaining the structural integrity

of the protein.

In conclusion, the present study demonstrates that the isoleucine

residue that is topologically conserved in the core of the N-terminal

domain of GSTs and GST-like proteins contributes significantly to

the stability of the GST fold but not to structure and function.
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